Why this talk?

- You will be seeing a lot of GRADE
- Exemplifies three key principles of EBHC
 - Need for systematic reviews of best evidence
 - Hierarchy of evidence
 - Need for values and preferences
- If you understand GRADE you understand how to use evidence to inform practice
Plan

- GRADE background
- Two steps
 - Quality of evidence (certainty, confidence)
 - Strength of recommendation
- Evidence profiles
- An exercise in applying GRADE
Proliferation of systems 😞

Common international grading 😊

- GRADE (Grades of recommendation, assessment, development and evaluation)
- International group
 - Australian NMRC, SIGN, USPSTF, WHO, NICE, Oxford CEBM, CDC, CC
- ~ 40 meetings over last 18 years
>100 organizations have adopted GRADE
What are we grading?

Two components

No confidence Very Low Low Moderate High Totally confident

Strength of recommendation: Strong and weak (conditional)
What are we grading?

- NOT individual studies
- Bodies of evidence
- Tools to assess RoB in individual studies
 - RCTs: Cochrane
 - Observational studies: O-N, Robins
- Outcomes
 - Quality can differ across outcomes
 - Benefit and harm
Determinants of confidence

- RCTs start high
- Observational studies start low
- What can lower confidence?
GRADE assessment of quality/certainty/confidence in evidence

Risk of Bias

- Allocation concealment
- Incomplete reporting
- Losses to follow-up
- Failure of blinding

Inconsistency of results

Indirectness of evidence

Imprecision of results

Publication bias
GRADE assessment of quality/certainty/confidence in evidence

Risk of Bias
- Failure of blinding
- Allocation concealment
- Incomplete reporting
- Losses to follow-up

Inconsistency of results
- Dissimilar point estimates
- Non-overlapping confidence intervals
- High I²
- Low p-value
- Heterogeneity test

Indirectness of evidence
- Applicability/generalizability
- Patients, interventions, Comparators, outcomes

Imprecision of results
- Wide confidence intervals

Publication bias
Determinants of confidence

- **Bias**
 - Study design and implementation
 - concealment, blinding, loss to follow-up
 - Publication bias

- **Imprecision**
 - wide confidence intervals

- **Indirectness (applicability, generalizability)**
 - Patients,
 - Interventions
 - Comparators
 - Outcomes
Inconsistency – happy with these results?

Relative Risk (95% CI)

- 0.73 (0.49, 1.07)
- 0.74 (0.59, 0.94)
- 0.76 (0.51, 1.12)
- 0.71 (0.56, 0.90)
- 0.73 (0.61, 0.88)
What about these?

Relative Risk (95% CI)

- 0.44 (0.30, 0.65)
- 0.45 (0.36, 0.60)
- 1.25 (0.84, 1.84)
- 1.17 (0.92, 1.49)
- 0.73 (0.61, 0.88)
Consistency of results

- Variation in size of effect
- Overlap in confidence intervals
- Statistical significance of heterogeneity
- I^2
If these results what next?

Relative Risk (95% CI)

- 0.44 (0.30, 0.65)
- 0.45 (0.36, 0.60)
- 1.25 (0.84, 1.84)
- 1.17 (0.92, 1.49)
- 0.73 (0.61, 0.88)
What can raise confidence?

- Large magnitude can rate up one level
 - very large two levels
- Common criteria
 - everyone used to do badly
 - almost everyone does well
 - quick action
- Hip replacement for hip osteoarthritis
Certainty assessment criteria

<table>
<thead>
<tr>
<th>Study Design</th>
<th>Confidence in estimates</th>
<th>Lower if</th>
<th>Higher if</th>
</tr>
</thead>
<tbody>
<tr>
<td>Randomized trials</td>
<td>High</td>
<td>Risk of bias -1 Serious -2 Very serious</td>
<td>Large Effect +1 Large +1 Very large</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Inconsistency -1 Serious -2 Very serious</td>
<td>Dose response +1 Evidence of a gradient</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Indirectness -1 Serious -2 Very serious</td>
<td>All plausible confounding +1 Would reduce a</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Imprecision -1 Serious -2 Very serious</td>
<td>demonstrated effect or +1 would suggest a</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Publication bias -1 Likely -2 Very likely</td>
<td>spurious effect when results show no effect</td>
</tr>
<tr>
<td>Observational studies</td>
<td>Low</td>
<td>Imprecision -1 Serious -2 Very serious</td>
<td>Imprecision -1 Likely -2 Very likely</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Publication bias -1 Likely -2 Very likely</td>
<td>Publication bias -1 Likely -2 Very likely</td>
</tr>
<tr>
<td></td>
<td>Very Low</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: The table above outlines the assessment criteria for certainty in estimates based on the design of the study. Each criterion is scored lower or higher based on the severity of the issue. Higher scores generally indicate lower confidence in the estimates, while lower scores indicate higher confidence.
Beta blockers in non-cardiac surgery

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Number of participants (studies)</th>
<th>Risk of Bias</th>
<th>Consistency</th>
<th>Directness</th>
<th>Precision</th>
<th>Quality</th>
<th>Relative Effect (95% CI)</th>
<th>Absolute risk difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Myocardial infarction</td>
<td>10,125 (9)</td>
<td>No serious limitations</td>
<td>No serious limitations</td>
<td>No serious limitations</td>
<td>Not detected</td>
<td>High</td>
<td>0.71 (0.57 to 0.86)</td>
<td>1.5% fewer (0.7% fewer to 2.1% fewer)</td>
</tr>
<tr>
<td>Mortality</td>
<td>10,205 (7)</td>
<td>No serious limitations</td>
<td>Possibly inconsistent</td>
<td>No serious limitations</td>
<td>Imprecise</td>
<td>Moderate or low</td>
<td>1.23 (0.98 – 1.55)</td>
<td>0.5% more (0.1% fewer to 1.3% more)</td>
</tr>
<tr>
<td>Stroke</td>
<td>10,889 (5)</td>
<td>No serious limitations</td>
<td>No serious limitations</td>
<td>No serious limitations</td>
<td>Not detected</td>
<td>High</td>
<td>2.21 (1.37 – 3.55)</td>
<td>0.5% more (0.2% more to 1.3% more)</td>
</tr>
</tbody>
</table>
Strength of Recommendation

- Strong recommendation
 - benefits clearly outweigh risks/hassle/cost
 - risk/hassle/cost clearly outweighs benefit

- What can downgrade strength?
 - Low confidence in estimates
 - Close balance between up and downsides
Risk/Benefit tradeoff

- Aspirin after myocardial infarction
 - 25% reduction in relative risk
 - side effects minimal, cost minimal
 - benefit obviously much greater than risk/cost

- Anticoagulants in low risk atrial fibrillation
 - anticoagulants reduce stroke vs ASA by 50%
 - but if risk only 1% per year, ARR 0.5%
 - increased bleeds by 1.5% per year
Aspirin after MI – do it

Anticoagulants vs than ASA in low risk Afib
 -- probably do it
 -- probably don’t do it
Significance of strong vs weak

- Variability in patient preference
 - strong, almost all same choice (> 90%)
 - weak, choice varies appreciably

- Interaction with patient
 - strong, just inform patient
 - weak, ensure choice reflects values

- Use of decision aid
 - strong, don’t bother
 - weak, use the aid

- Quality of care criterion
 - strong, consider
 - weak, don’t consider
Flavanoids for Hemorrhoids

- Venotonic agents
 - increase venous return

- Popularity
 - 90 venotonics commercialized in France
 - none in Sweden and Norway
 - France 70% of world market

- Possibilities
 - French misguided
 - rest of world missing out
Systematic Review

- 14 trials, 1432 patients
- Key outcome
 - risk not improving/persistent symptoms
 - 11 studies, 1002 patients, 375 events
 - RR 0.4, 95% CI 0.29 to 0.57
- Minimal side effects
- Is France right?
- What is the quality of evidence?
What can lower confidence?

- Risk of bias
 - lack of detail re concealment
 - questionnaires not validated

- Indirectness – no problem

- Inconsistency, need to look at the results
Review: Phlebotonics for hemorrhoids
Comparison: 01 Venotonics vs placebo

Outcome: 08 Overall improvement: no improvement/some improvement

<table>
<thead>
<tr>
<th>Study or sub-category</th>
<th>RR (random)</th>
<th>Weight</th>
<th>RR (random)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>log[RR] (SE)</td>
<td>95% CI</td>
<td>95% CI</td>
</tr>
<tr>
<td>01 Up to seven days</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chauvenet</td>
<td>-0.8916 (0.2376)</td>
<td>12.67</td>
<td>0.41 [0.26, 0.65]</td>
</tr>
<tr>
<td>Cospide</td>
<td>-2.2073 (0.6117)</td>
<td>5.51</td>
<td>0.11 [0.03, 0.36]</td>
</tr>
<tr>
<td>Thanapongsathorn</td>
<td>-0.4308 (0.2985)</td>
<td>11.18</td>
<td>0.65 [0.36, 1.17]</td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td></td>
<td>29.36</td>
<td>0.37 [0.18, 0.77]</td>
</tr>
<tr>
<td>Test for heterogeneity: Chi² = 6.92, df = 2 (P = 0.03), I² = 71.1%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for overall effect: Z = 2.67 (P = 0.008)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>02 Up to four weeks</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Annoni F</td>
<td>-1.6094 (0.7073)</td>
<td>4.50</td>
<td>0.20 [0.05, 0.80]</td>
</tr>
<tr>
<td>Clyne MB</td>
<td>-0.9943 (0.3983)</td>
<td>8.94</td>
<td>0.37 [0.17, 0.81]</td>
</tr>
<tr>
<td>Pirard J</td>
<td>-1.1712 (0.3086)</td>
<td>10.94</td>
<td>0.31 [0.17, 0.57]</td>
</tr>
<tr>
<td>Thanapongsathorn</td>
<td>-1.1087 (1.1098)</td>
<td>2.18</td>
<td>0.33 [0.04, 2.91]</td>
</tr>
<tr>
<td>Thorp</td>
<td>0.2624 (0.3291)</td>
<td>10.46</td>
<td>1.30 [0.68, 2.48]</td>
</tr>
<tr>
<td>Titapan</td>
<td>-0.8916 (0.3691)</td>
<td>9.56</td>
<td>0.41 [0.20, 0.85]</td>
</tr>
<tr>
<td>Wijayanegara</td>
<td>-0.5978 (0.1375)</td>
<td>14.97</td>
<td>0.55 [0.42, 0.72]</td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td></td>
<td>61.54</td>
<td>0.48 [0.32, 0.72]</td>
</tr>
<tr>
<td>Test for heterogeneity: Chi² = 13.87, df = 6 (P = 0.03), I² = 56.7%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for overall effect: Z = 3.57 (P = 0.0004)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03 Further than four weeks</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Godeberg</td>
<td>-1.7719 (0.3906)</td>
<td>9.1C</td>
<td>0.17 [0.08, 0.37]</td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td></td>
<td>9.1C</td>
<td>0.17 [0.08, 0.37]</td>
</tr>
<tr>
<td>Test for heterogeneity: not applicable</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for overall effect: Z = 4.54 (P < 0.00001)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td></td>
<td>100.0C</td>
<td>0.40 [0.29, 0.57]</td>
</tr>
<tr>
<td>Test for heterogeneity: Chi² = 28.66, df = 10 (P = 0.001), I² = 65.1%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for overall effect: Z = 5.14 (P < 0.00001)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Favours treatment
Favours control
Publication bias?

- Size of studies
 - 40 to 234 patients, most around 100

- All industry sponsored
What can lower confidence?

- Risk of bias
 - lack of detail re concealment
 - questionnaires not validated

- Inconsistency
 - almost all show positive effect, trend
 - heterogeneity $p < 0.001$; I^2 65.1%

- Indirectness

- Imprecision
 - RR 0.4, 95% CI 0.29 to 0.57

- Publication bias
 - 40 to 234 patients, all industry sponsored
Is France right?

- Recommendation
 - yes
 - no against use

- Strength
 - strong
 - weak
Clinicians, policy makers need summaries

- Confidence in evidence
- Strength of recommendations

Explicit rules

- Transparent, informative

GRADE

- Complex assessment
 - simple as possible, transparent, systematic
- Increasing wide adoption
- Captures all key elements of EBM approach