Why this talk?

- You will be seeing a lot of GRADE
- Exemplifies three key principles of EBHC
 - need for systematic reviews of best evidence
 - hierarchy of evidence
 - need for values and preferences
- If you understand GRADE you understand how to use evidence to inform practice
Plan

- GRADE background
- Two steps
 - certainty in estimates (quality of evidence)
 - strength of recommendation
- Evidence profiles
- An exercise in applying GRADE
GRADE (Grades of recommendation, assessment, development and evaluation)

International group

- Australian NMRC, SIGN, USPSTF, WHO, NICE, Oxford CEBM, CDC, CC

~ 40 meetings over last 16 years
>100 organizations have adopted GRADE
What are we grading?

Two components

Strength of recommendation: Strong and weak (conditional)
Determinants of confidence

- RCTs start high
- Observational studies start low
- What can lower confidence?
Determinants of confidence

- **Bias**
 - study design and implementation
 - concealment, blinding, loss to follow-up
 - publication bias

- **Imprecision**
 - wide confidence intervals

- **Indirectness**
 - patients, interventions
 - outcomes
 - indirect comparisons
Consistency of results

- Variation in size of effect
- Overlap in confidence intervals
- Statistical significance of heterogeneity
- I^2
What can raise confidence?

- Large magnitude can rate up one level
 - very large two levels
- Common criteria
 - everyone used to do badly
 - almost everyone does well
 - quick action
- Hip replacement for hip osteoarthritis
Certainty assessment criteria

<table>
<thead>
<tr>
<th>Study Design</th>
<th>Confidence in estimates</th>
<th>Lower if</th>
<th>Higher if</th>
</tr>
</thead>
<tbody>
<tr>
<td>Randomized trials</td>
<td>High</td>
<td>Risk of bias</td>
<td>Large Effect</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-1 Serious</td>
<td>+1 Large</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-2 Very serious</td>
<td>+1 Very large</td>
</tr>
<tr>
<td></td>
<td>Moderate</td>
<td>Inconsistency</td>
<td>Dose response</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-1 Serious</td>
<td>+1 Evidence of a gradient</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-2 Very serious</td>
<td>All plausible confounding</td>
</tr>
<tr>
<td></td>
<td>Low</td>
<td>Indirectness</td>
<td>+1 Would reduce a demonstrated effect or</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-1 Serious</td>
<td>+1 would suggest a spurious effect when results show no effect</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-2 Very serious</td>
<td></td>
</tr>
<tr>
<td>Observational studies</td>
<td>Very Low</td>
<td>Imprecision</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>-1 Serious</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>-2 Very serious</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Publication bias</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>-1 Likely</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>-2 Very likely</td>
<td></td>
</tr>
</tbody>
</table>
Beta blockers in non-cardiac surgery

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Number of participants (studies)</th>
<th>Risk of Bias</th>
<th>Consistency</th>
<th>Directness</th>
<th>Precision</th>
<th>Publication Bias</th>
<th>Quality</th>
<th>Relative Effect (95% CI)</th>
<th>Absolute risk difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Myocardial infarction</td>
<td>10,125 (9)</td>
<td>No serious limitations</td>
<td>No serious limitations</td>
<td>No serious limitations</td>
<td>No serious limitations</td>
<td>Not detected</td>
<td>High</td>
<td>0.71 (0.57 to 0.86)</td>
<td>1.5% fewer (0.7% fewer to 2.1% fewer)</td>
</tr>
<tr>
<td>Mortality</td>
<td>10,205 (7)</td>
<td>No serious limitations</td>
<td>Possibly inconsistent</td>
<td>No serious limitations</td>
<td>Imprecise</td>
<td>Not detected</td>
<td>Moderate or low</td>
<td>1.23 (0.98 – 1.55)</td>
<td>0.5% more (0.1% fewer to 1.3% more)</td>
</tr>
<tr>
<td>Stroke</td>
<td>10,889 (5)</td>
<td>No serious limitations</td>
<td>No serious limitations</td>
<td>No serious limitations</td>
<td>No serious limitations</td>
<td>Not detected</td>
<td>High</td>
<td>2.21 (1.37 – 3.55)</td>
<td>0.5% more (0.2% more to 1.3% more)</td>
</tr>
</tbody>
</table>
Strength of Recommendation

- Strong recommendation
 - benefits clearly outweigh risks/hassle/cost
 - risk/hassle/cost clearly outweighs benefit

- What can downgrade strength?
 - Low confidence in estimates
 - Close balance between up and downsides
Risk/Benefit tradeoff

- Aspirin after myocardial infarction
 - 25% reduction in relative risk
 - side effects minimal, cost minimal
 - benefit obviously much greater than risk/cost

- Anticoagulants in low risk atrial fibrillation
 - anticoagulants reduce stroke vs ASA by 50%
 - but if risk only 1% per year, ARR 0.5%
 - increased bleeds by 1.5% per year
Aspirin after MI – do it

Anticoagulants vs than ASA in low risk Afib
 -- probably do it
 -- probably don’t do it
Significance of strong vs weak

- Variability in patient preference
 - strong, almost all same choice (> 90%)
 - weak, choice varies appreciably

- Interaction with patient
 - strong, just inform patient
 - weak, ensure choice reflects values

- Use of decision aid
 - strong, don’t bother
 - weak, use the aid

- Quality of care criterion
 - strong, consider
 - weak, don’t consider
Venotonic agents
- increase venous return

Popularity
- 90 venotonics commercialized in France
- none in Sweden and Norway
- France 70% of world market

Possibilities
- French misguided
- rest of world missing out
Systematic Review

- 14 trials, 1432 patients

Key outcome
- risk not improving/persistent symptoms
- 11 studies, 1002 patients, 375 events
- RR 0.4, 95% CI 0.29 to 0.57

- Minimal side effects

- Is France right?

- What is the quality of evidence?
What can lower confidence?

- Risk of bias
 - lack of detail re concealment
 - questionnaires not validated
- Indirectness – no problem
- Inconsistency, need to look at the results
Review: Phlebotonics for hemorrhoids
Comparison: 01 Venotonics vs placebo
Outcome: 08 Overall improvement: no improvement/some improvement

<table>
<thead>
<tr>
<th>Study or sub-category</th>
<th>RR (random) log[RR] (SE)</th>
<th>Weight %</th>
<th>RR (random) 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>01 Up to seven days</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chauvenet</td>
<td>-0.8916 (0.2376)</td>
<td>12.67</td>
<td>0.41 [0.26, 0.65]</td>
</tr>
<tr>
<td>Cospite</td>
<td>-2.2073 (0.6117)</td>
<td>5.51</td>
<td>0.11 [0.03, 0.36]</td>
</tr>
<tr>
<td>Thanapongsathorn</td>
<td>-0.4308 (0.2985)</td>
<td>11.18</td>
<td>0.65 [0.36, 1.17]</td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td></td>
<td></td>
<td>29.36 [0.37, 0.77]</td>
</tr>
<tr>
<td>Test for heterogeneity: Chi² = 6.92, df = 2 (P = 0.03), I² = 71.1%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for overall effect: Z = 2.67 (P = 0.008)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

02 Up to four weeks			
Annoni F	-1.6094 (0.7073)	4.50	0.20 [0.05, 0.80]
Clyne MB	-0.9943 (0.3983)	8.94	0.37 [0.17, 0.81]
Pirard J	-1.1712 (0.3086)	10.94	0.31 [0.17, 0.57]
Thanapongsathorn	-1.1087 (1.1098)	2.18	0.33 [0.04, 2.91]
Thorp	0.2624 (0.3291)	10.46	1.30 [0.68, 2.48]
Titapan	-0.8916 (0.3691)	9.56	0.41 [0.20, 0.85]
Wijayanegara	-0.5978 (0.1375)	14.97	0.55 [0.42, 0.72]
Subtotal (95% CI)			61.54 [0.48, 0.72]
Test for heterogeneity: Chi² = 13.87, df = 6 (P = 0.03), I² = 56.7%			
Test for overall effect: Z = 3.57 (P = 0.0004)			

03 Further than four weeks			
Godeberg	-1.7719 (0.3906)	9.10	0.17 [0.08, 0.37]
Subtotal (95% CI)			9.10 [0.17, 0.37]
Test for heterogeneity: not applicable			
Test for overall effect: Z = 4.54 (P < 0.00001)			

| **Total (95% CI)** | | | |
| Test for heterogeneity: Chi² = 28.66, df = 10 (P = 0.001), I² = 65.1% |
| Test for overall effect: Z = 5.14 (P < 0.00001) |

![Forest plot indicating treatment effects and statistical significance](attachment:image.png)
Publication bias?

- Size of studies
 - 40 to 234 patients, most around 100
- All industry sponsored
What can lower confidence?

- **Risk of bias**
 - lack of detail re concealment
 - questionnaires not validated

- **Inconsistency**
 - almost all show positive effect, trend
 - heterogeneity $p < 0.001$; I^2 65.1%

- **Indirectness**

- **Imprecision**
 - RR 0.4, 95% CI 0.29 to 0.57

- **Publication bias**
 - 40 to 234 patients, all industry sponsored
Is France right?

- Recommendation
 - yes
 - no against use

- Strength
 - strong
 - weak
Clinicians, policy makers need summaries
- confidence in estimates
- strength of recommendations

Explicit rules
- transparent, informative

GRADE
- simple, transparent, systematic
- increasing wide adoption
- captures all key elements of EBM approach