Getting Started with Systematic Reviews

W. Scott Richardson, M.D.
AU/UGA Medical Partnership
Three Owl Learning Institute
Conflicts of Interest

- I have no financial ties with industry that pose a conflict of interest regarding the content of this presentation

- I will not be discussing “off label” uses of any medications or devices

- Image copyrights are retained by their original creators, publishers, etc.
Session Aims

- Why bother … ?
- Structure & function
- Critical appraisal
- Forest plots
- Heterogeneity
- Further learning about systematic reviews
EBCP: Here is Why

• We can’t make well-informed decisions without information
• Not all information is created equal
• Misinformation can be worse than no information
• Better information → better informed decisions → better outcomes
Individual randomized trials of treatment ...

- Each trial is one experiment, one new chance to get closer to the ‘truth’
- One trial ~ one race
- Often, more than one trial is done
- Will all trial results agree (even by chance)?
As trials accumulate ...

- Seldom is one trial definitive ("One ring to rule them all ...")
- In science, as experiments accrue, knowledge is built cumulatively
- Is there a scientific way to combine results of individual trials?
- Yes! Systematic reviews (we’ll abbreviate “SRs”)
‘Narrative’ vs. ‘Systematic’

- Address disorder as a whole – overview
- Or, tell a ‘story’
- Variety of questions
- No methods section
- No formal pooling
- Thus, may be cumulative but not comprehensive

- Address focused question (e.g. effect of therapy, accuracy of diagnostic test)
- Methods section
- Formal pooling, when appropriate
- Thus, cumulative and comprehensive
SR Methods

- Formulate questions
- Define eligibility criteria for study inclusion
- Develop a priori hypotheses to explain heterogeneity
- Conduct search
- Screen titles, abstracts for inclusion, exclusion
- Review full text
- Assess the risk of bias
- Abstract data
- When meta-analysis is performed:
 - Summary estimates, confidence intervals
 - Explain heterogeneity
 - Rate confidence in estimates of effect
- Report results
- Update review as needed
‘PRISMA’

- ‘Preferred Reporting Items for Systematic reviews and Meta-Analyses’
- Incorporates evolutionary advances
- Specifies 27 item checklist for reporting, e.g. standardizes figures, etc.
- Since 2009, has replaced ‘QUOROM’, has been adopted by many journals
Finding SRs

- **Cochrane Library**
 - CDSR – Cochrane Database of Systematic Reviews
 - DARE – Database of Abstracts of Reviews of Effects
- **PubMed**
 - Publication types
 - Clinical queries
- **Work with your librarians**
Critical Appraisal of SRs

Credibility:
• Sensible question?
• Exhaustive search?
• Selection, assessments reproducible?
• Present results ready for application?
• Address confidence in estimates of effect?

Confidence in Estimates:
• Risk of bias?
• Consistent across studies?
• Effect: RR, OR, WMD
• Precision: 95% CI
• Apply to my patient?
• Reporting bias?
• Reasons to increase confidence rating?
‘Risk of bias’

- Moves away from dichotomous “yes/no” to explicit rating of risk of bias
- At both study-level and outcome-level
- *BMJ 2011; 343: d5928 doi*
Risk of bias graphs

Figure 1. Risk of bias graph: review authors' judgements about each risk of bias item presented as percentages across all included trials.
Reporting Biases

- Selective reporting of studies
 - Delayed (or never)
 - Location, language
- Selective reporting of outcomes, times
- Selective reporting of analyses
- *UG 3/e Box 23-2*

- Empirical evidence
- Distort the ‘body of evidence’ in the literature
- Can lead to wrong conclusions about the benefits and harms
Forest Plot – a

Outcome: Incidence of recurrent VTE

<table>
<thead>
<tr>
<th>Study or subgroup</th>
<th>LMWH n/N</th>
<th>VKA n/N</th>
<th>Peto Odds Ratio</th>
<th>Weight %</th>
<th>Peto Odds Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Das 1996</td>
<td>5/50</td>
<td>2/55</td>
<td></td>
<td>5.5 %</td>
<td>2.75 [0.60, 12.69]</td>
</tr>
<tr>
<td>Daskalopoulos 2005</td>
<td>2/50</td>
<td>3/52</td>
<td></td>
<td>4.0 %</td>
<td>0.69 [0.11, 4.11]</td>
</tr>
<tr>
<td>Gonzalez 1999</td>
<td>8/93</td>
<td>19/92</td>
<td></td>
<td>19.4 %</td>
<td>0.38 [0.17, 0.86]</td>
</tr>
<tr>
<td>Hamann 1998</td>
<td>3/100</td>
<td>2/100</td>
<td></td>
<td>4.1 %</td>
<td>1.50 [0.26, 8.84]</td>
</tr>
<tr>
<td>Hull 2007</td>
<td>18/369</td>
<td>21/368</td>
<td></td>
<td>30.9 %</td>
<td>0.85 [0.45, 1.62]</td>
</tr>
<tr>
<td>Kakkas 2003</td>
<td>3/103</td>
<td>5/221</td>
<td></td>
<td>5.7 %</td>
<td>1.31 [0.29, 5.89]</td>
</tr>
<tr>
<td>Lopaciuk 1999</td>
<td>3/101</td>
<td>7/101</td>
<td></td>
<td>8.0 %</td>
<td>0.43 [0.12, 1.54]</td>
</tr>
<tr>
<td>Lopez 2001</td>
<td>0/81</td>
<td>2/77</td>
<td></td>
<td>2.5 %</td>
<td>0.13 [0.01, 1.22]</td>
</tr>
<tr>
<td>Piri 1994</td>
<td>6/93</td>
<td>4/94</td>
<td></td>
<td>8.0 %</td>
<td>1.54 [0.43, 5.49]</td>
</tr>
<tr>
<td>Romera 2009</td>
<td>5/119</td>
<td>7/122</td>
<td></td>
<td>9.6 %</td>
<td>0.72 [0.23, 2.31]</td>
</tr>
<tr>
<td>Varga 2000</td>
<td>2/50</td>
<td>1/50</td>
<td></td>
<td>2.5 %</td>
<td>1.97 [0.20, 19.43]</td>
</tr>
</tbody>
</table>

Total (95% CI): 1209 [LMWH], 1332 [VKA]

- Total events: 55 (LMWH), 74 (VKA)
- Heterogeneity: Chi² = 11.68, df = 10 (P = 0.31); I² = 14%
- Test for overall effect: Z = 1.44 (P = 0.15)
- Test for subgroup differences: Not applicable
<table>
<thead>
<tr>
<th>Deaths/Total</th>
<th>Albumin</th>
<th>Saline</th>
<th>Odds ratio (95% CI)</th>
<th>Odds ratio (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>All patients</td>
<td>644/3012</td>
<td>655/3028</td>
<td>0.99 (0.87 to 1.11)</td>
<td></td>
</tr>
<tr>
<td>Baseline serum albumin concentration (\leq 25 \text{ g/l})</td>
<td>291/1228</td>
<td>321/1223</td>
<td>0.87 (0.73 to 1.05)</td>
<td></td>
</tr>
<tr>
<td>Baseline serum albumin concentration (>25 \text{ g/l})</td>
<td>353/1784</td>
<td>334/1805</td>
<td>1.09 (0.92 to 1.28)</td>
<td></td>
</tr>
<tr>
<td>Heterogeneity (P=0.08)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig 5 | Forest plot from study comparing resuscitation with albumin or saline in intensive care showing unadjusted odds ratio of death stratified by baseline albumin concentration\(^{18}\)
Are you happy pooling?

Relative Risk (95% CI)

- 0.73 (0.49, 1.07)
- 0.74 (0.59, 0.94)
- 0.76 (0.51, 1.12)
- 0.71 (0.56, 0.90)
- 0.73 (0.61, 0.88)
Relative Risk (95% CI)

- 0.44 (0.30, 0.65)
- 0.45 (0.36, 0.60)
- 1.25 (0.84, 1.84)
- 1.17 (0.92, 1.49)
- 0.73 (0.61, 0.88)
What criteria were you using?

- similarity of point estimates
 - less similar, less happy

- overlap of confidence intervals
 - less overlap, less happy
Homogenous

Ho: RR1 = RR2 = RR3 = RR4

test for heterogeneity
what is the p-value?

p=0.99 for heterogeneity
Heterogeneous

Relative Risk (95% CI)

- 0.44 (0.30, 0.65)
- 0.45 (0.36, 0.60)
- 1.25 (0.84, 1.84)
- 1.17 (0.92, 1.49)
- 0.73 (0.61, 0.88)

p-value for heterogeneity < 0.001
I² Interpretation

100%
Why are we pooling?

Very concerned

Getting concerned

Only a little concerned

0%
No worries

Why are we pooling?
Homogenous

What is the I^2?

$p=0.99$ for heterogeneity

$I^2=0\%$
Heterogeneous

Relative Risk (95% CI)

0.44 (0.30, 0.65)
0.45 (0.36, 0.60)
1.25 (0.84, 1.84)
1.17 (0.92, 1.49)
0.73 (0.61, 0.88)

p-value for heterogeneity < 0.001
I²=89%

What is the I²?
Heterogeneity

- Humans vary, e.g. in risk of poor outcomes from disease, in response to therapy, and in vulnerability to adverse effects
- Heterogeneity represents this variation in results
- Affects certainty about estimates of effect

- Identified by:
 - Visual inspection
 - Chi^2: “yes” or “no”
 - I^2: 0 to 100%

- Explored by:
 - Patients
 - Interventions
 - Comparisons
 - Outcomes
 - Methods, Systems, +
How quickly do systematic reviews go out of date?

- Survival analysis
- 100 systematic reviews, 1995 – 2005
- Searched for ‘update signals’ (i.e. new trial evidence)

Ann Intern Med 2007
Learning more about SRs

Next steps
- In your groups, work through SR package
- **Build skills in areas:**
 - Finding SRs
 - Appraising SRs critically
 - Interpreting results
 - Applying results
 - Explaining to others

Further steps
- Subgroup analyses
- Cumulative meta-analysis
- Individual patient-data meta-analysis
- Network meta-analysis
- Translating SR evidence into action
Taking SRs home …

• When well-made and current, SRs synthesize the body of research evidence that can guide important decisions.

• SRs have limits, yet we should start with them: ‘how well does this work?’

• We can (and must!) appraise SRs for risk of bias, estimates of effect, and confidence in these estimates.
Thank You